Dramatically reduced spliceosome in Cyanidioschyzon merolae.
نویسندگان
چکیده
The human spliceosome is a large ribonucleoprotein complex that catalyzes pre-mRNA splicing. It consists of five snRNAs and more than 200 proteins. Because of this complexity, much work has focused on the Saccharomyces cerevisiae spliceosome, viewed as a highly simplified system with fewer than half as many splicing factors as humans. Nevertheless, it has been difficult to ascribe a mechanistic function to individual splicing factors or even to discern which are critical for catalyzing the splicing reaction. We have identified and characterized the splicing machinery from the red alga Cyanidioschyzon merolae, which has been reported to harbor only 26 intron-containing genes. The U2, U4, U5, and U6 snRNAs contain expected conserved sequences and have the ability to adopt secondary structures and form intermolecular base-pairing interactions, as in other organisms. C. merolae has a highly reduced set of 43 identifiable core splicing proteins, compared with ∼90 in budding yeast and ∼140 in humans. Strikingly, we have been unable to find a U1 snRNA candidate or any predicted U1-associated proteins, suggesting that splicing in C. merolae may occur without the U1 small nuclear ribonucleoprotein particle. In addition, based on mapping the identified proteins onto the known splicing cycle, we propose that there is far less compositional variability during splicing in C. merolae than in other organisms. The observed reduction in splicing factors is consistent with the elimination of spliceosomal components that play a peripheral or modulatory role in splicing, presumably retaining those with a more central role in organization and catalysis.
منابع مشابه
Splicing diversity revealed by reduced spliceosomes in C. merolae and other organisms
Pre-mRNA splicing has been considered one of the hallmarks of eukaryotes, yet its diversity is astonishing: the number of substrate introns for splicing ranges from hundreds of thousands in humans to a mere handful in certain parasites. The catalytic machinery that carries out splicing, the spliceosome, is similarly diverse, with over 300 associated proteins in humans to a few tens in other org...
متن کاملMitochondrial localization of ferrochelatase in a red alga Cyanidioschyzon merolae.
Ferrochelatase (FECH) is an essential enzyme for the final step of heme biosynthesis. In green plants, its activity has been reported in both plastids and mitochondria. However, the precise subcellular localization of FECH remains uncertain. In this study, we analyzed the localization of FECH in the unicellular red alga, Cyanidioschyzon merolae. Immunoblot and enzyme activity analyses of subcel...
متن کاملImprovement of culture conditions and evidence for nuclear transformation by homologous recombination in a red alga, Cyanidioschyzon merolae 10D.
Although the nuclear genome sequence of Cyanidioschyzon merolae 10D, a unicellular red alga, was recently determined, DNA transformation technology that is important as a model plant system has never been available thus far. In this study, improved culture conditions resulted in a faster growth rate of C. merolae in liquid medium (doubling time = 9.2 h), and colony formation on gellan gum plate...
متن کاملUniversity of Groningen Thermostable phycocyanin from the red microalga Cyanidioschyzon merolae, a new natural blue food colorant
The demand for natural food colorants is growing as consumers question the use of artificial colorants more and more. The phycobiliprotein C-phycocyanin of Arthospira platensis is used as a natural blue colorant in certain food products . The thermoacidophi l ic red microa lga Cyanidioschyzon merolaemight provide an alternative source of phycocyanin. Cyanidioschyzon merolae belongs to the order...
متن کاملPhotorespiratory glycolate oxidase is essential for the survival of the red alga Cyanidioschyzon merolae under ambient CO2 conditions
Photorespiration is essential for all organisms performing oxygenic photosynthesis. The evolution of photorespiratory metabolism began among cyanobacteria and led to a highly compartmented pathway in plants. A molecular understanding of photorespiration in eukaryotic algae, such as glaucophytes, rhodophytes, and chlorophytes, is essential to unravel the evolution of this pathway. However, mecha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 11 شماره
صفحات -
تاریخ انتشار 2015